EMS = Electrical Muscle Stimulation
The principle behind this is to stimulate and strengthen the muscles with the help of electrical impulses. With EMS it is possible to train the entire skeletal muscles in a simple and safe way. The effectiveness and safety of EMS training has already been scientifically proven in various studies.
Electrical muscle stimulation is based on a principle inherent in the body
When our sensory organs such as eyes, ears, nose and skin receive stimuli from the environment - i.e. we see something, hear a noise or feel the rain on our skin - this information is passed on to the brain, processed there and the corresponding body reactions are triggered. For example, the brain tells the muscles to tense up. The brain communicates with the muscles and organs using electrical signals. This means: Everything we see, smell, taste, feel, every thought and every movement is the result of electricity. Electrical signals are nothing foreign to our body.
Strom ist nicht gleich Strom
Beim EMS-Training kommen zwei unterschiedliche Stromformen zum Einsatz: rein niederfrequenter oder „modulierter“ mittelfrequenter Strom. Aber welche Effekte lassen sich mit mit welchen Impulsen erzielen? Ausschlaggebend für die Wirkweise des Stroms ist neben der Dauer und der Breite des Impulses auch die Frequenz, das heißt, die Anzahl der elektrischen Impulse pro Sekunde. Je nach Höhe der Frequenz werden unterschiedliche Muskelfasertypen angesprochen.
Red and white muscle fibers
Skeletal muscles are composed of different types of muscle fibers. It consists of the red, slowly tiring type I muscle fibers, which work less intensively but more persistently, and the white type II muscle fibers, which can develop a lot of force for a short period of time but tire more quickly than the red ones.
The red muscle fibers work almost constantly: thanks to their help we can carry out everyday movements and postures such as sitting, standing or walking. The white muscle fibers are thicker and have more pronounced growth potential than the red ones. Strength training cannot increase the amount of white muscle fibers, but their diameter increases, which means muscle mass increases.
Which muscle fibers react to which frequencies?
Since the red and white muscle fibers fulfill different functions and have different properties, they also respond differently to different current frequencies.
Translating to the impulse means:
2 Hz - 15 Hz
With pulses between 2-15 Hz, the body releases additional hormones that counteract pain and at the same time lighten the mood
20 Hz - 30 Hz
Between 20 and 30 Hz, type I and type IIa muscle fibers are addressed in combination
>40 Hz
Up to approx. 40 Hz, mainly the low-fatigue, red type I fibers react
50 Hz - 100 Hz
At frequencies between approximately 50 to 100 Hz, the white type II muscle fibers, which tire quickly, are primarily stimulated
Je höher die Frequenz, desto niedriger der Widerstand
Bevor das elektrische Signal zu den Muskeln und Nerven vordringt, muss der Strom zuerst den galvanischen und den kapazitiven Widerstand der Haut überwinden. Dabei gilt das Prinzip: Je höher die Frequenz, desto geringer der Widerstand.
Für die Niederfrequenz (NF) bis 1.000 Hz stellt der kapazitive Widerstand der Haut eine hohe Barriere dar – dadurch dringt der Strom weniger in die Tiefe. [2] Deshalb wird der reine NF-Impuls von Anwendern auch manchmal als „pieksig“ empfunden.
Für die Mittelfrequenz (MF) ab 1.000 Hz ist der Hautwiderstand kein Problem. Durch den minimalen kapazitiven Hautwiderstand dringt der mittelfrequente Strom tiefer ein. [3] Deshalb wird der MF-Strom von Anwendern auch als angenehmer empfunden. Dadurch werden wiederum höhere Impulsstärken möglich, die durch stärkere Muskelkontraktionen intensivere Wirkung hervorrufen.